A further enhancement of Paul Graham's Batesian algorithm applied in spam filtering (Record no. 25349)

000 -LEADER
fixed length control field 03391nam a2200313Ia 4500
001 - CONTROL NUMBER
control field 77608
003 - CONTROL NUMBER IDENTIFIER
control field ft6057
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20251124095400.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 190426n 000 0 eng d
040 ## - CATALOGING SOURCE
Description conventions rda
041 ## - LANGUAGE CODE
Language code of text/sound track or separate title engtag
050 ## - LIBRARY OF CONGRESS CALL NUMBER
Classification number QA76.9 C36 2017
055 ## - CLASSIFICATION NUMBERS ASSIGNED IN CANADA
Classification number .
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Item number 2
100 ## - MAIN ENTRY--PERSONAL NAME
Personal name Jerhica Kim T. Canaya and Jolina P. Escolano.
245 #0 - TITLE STATEMENT
Title A further enhancement of Paul Graham's Batesian algorithm applied in spam filtering
264 ## - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture .
Name of producer, publisher, distributor, manufacturer .
Date of production, publication, distribution, manufacture, or copyright notice c2017
300 ## - PHYSICAL DESCRIPTION
Other physical details Undergraduate Thesis: (BSCS major in COmputer Science) -Pamantasan ng Lungsod ng Maynila, 2017.
336 ## - CONTENT TYPE
Content type code .
Content type term text
Source rdacontent
337 ## - MEDIA TYPE
Materials specified 0
Media type code .
Media type term unmediated
Source rdamedia
338 ## - CARRIER TYPE
Materials specified 0
Carrier type code .
Carrier type term volume
Source rdacarrier
505 ## - FORMATTED CONTENTS NOTE
Formatted contents note ABSTRACT: Nowadays, spammers are just in a corner, sending random and irrelevant mails to our-e-mails, considering that we need to check our received mails for the day. These spam mails may contain malicious words or attachment, links that redirects you to an unwanted website, and some links contain viruses that can harm your computer without even knowing it. These are threats to users, spammers can get information just by simply opening the mail they sent. This research paper presents a variation of token to consider that may use in filtering and number of token to test. This will be beneficial to all who’s using the email to send messages, these may prevent the user in having unnecessary files and viruses attached to the email. We have done manual simulations and computerized simulation to know the possible result of mail stricter. The Paul Graham’s Bayesian algorithm is a machine learning algorithm that trains and classifies a data or a token with different score, we therefore conclude that considering HTML tags and multiple word as token use to determine whether it is from a spam ail or non-spam mail is much effective. In applying this algorithm to spam filtering stricter, we can distinguish whether our received mail is a spam or not.
506 ## - RESTRICTIONS ON ACCESS NOTE
Terms governing access 5
520 ## - SUMMARY, ETC.
Summary, etc. ABSTRACT: Nowadays, spammers are just in a corner, sending random and irrelevant mails to our-e-mails, considering that we need to check our received mails for the day. These spam mails may contain malicious words or attachment, links that redirects you to an unwanted website, and some links contain viruses that can harm your computer without even knowing it. These are threats to users, spammers can get information just by simply opening the mail they sent. This research paper presents a variation of token to consider that may use in filtering and number of token to test. This will be beneficial to all who's using the email to send messages, these may prevent the user in having unnecessary files and viruses attached to the email. We have done manual simulations and computerized simulation to know the possible result of mail stricter. The Paul Graham's Bayesian algorithm is a machine learning algorithm that trains and classifies a data or a token with different score, we therefore conclude that considering HTML tags and multiple word as token use to determine whether it is from a spam ail or non-spam mail is much effective. In applying this algorithm to spam filtering stricter, we can distinguish whether our received mail is a spam or not.
526 ## - STUDY PROGRAM INFORMATION NOTE
Classification Filipiniana
540 ## - TERMS GOVERNING USE AND REPRODUCTION NOTE
Terms governing use and reproduction 5
655 ## - INDEX TERM--GENRE/FORM
Genre/form data or focus term academic writing
942 ## - ADDED ENTRY ELEMENTS
Institution code [OBSOLETE] lcc
Item type Archival materials
Source of classification or shelving scheme
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Collection code Permanent Location Current Location Shelving location Fund Source Total Checkouts Full call number Barcode Date last seen Item type
          Filipiniana-Thesis PLM PLM Archives Donation   QA76.9 C36 2017 FT6057 2025-09-20 Archival materials

© Copyright 2024 Phoenix Library Management System - Pinnacle Technologies, Inc. All Rights Reserved.