| 000 -LEADER |
| fixed length control field |
02399nam a22002417a 4500 |
| 003 - CONTROL NUMBER IDENTIFIER |
| control field |
FT8889 |
| 005 - DATE AND TIME OF LATEST TRANSACTION |
| control field |
20251217144631.0 |
| 008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
| fixed length control field |
251217b ||||| |||| 00| 0 eng d |
| 041 ## - LANGUAGE CODE |
| Language code of text/sound track or separate title |
engtag |
| 050 ## - LIBRARY OF CONGRESS CALL NUMBER |
| Classification number |
QA268.5 O93 2025 |
| 082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER |
| Classification number |
. |
| 100 1# - MAIN ENTRY--PERSONAL NAME |
| Personal name |
Oxales, Deanne Andrew R.; Zaguirre, Adrian Noel T.; Jingco, Jamie Cristina H. |
| 245 ## - TITLE STATEMENT |
| Title |
An enhancement of support vector machine for credit risk assessment applied in loan application |
| 264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE |
| Place of production, publication, distribution, manufacture |
. |
| Name of producer, publisher, distributor, manufacturer |
. |
| Date of production, publication, distribution, manufacture, or copyright notice |
c2025 |
| 300 ## - PHYSICAL DESCRIPTION |
| Other physical details |
Undergraduate Thesis: (Bachelor of Science in Computer Science) - Pamantasan ng Lungsod ng Maynila, 2025 |
| 336 ## - CONTENT TYPE |
| Source |
text |
| Content type term |
text |
| Content type code |
text |
| 337 ## - MEDIA TYPE |
| Source |
unmediated |
| Media type term |
unmediated |
| Media type code |
unmediated |
| 338 ## - CARRIER TYPE |
| Source |
volume |
| Carrier type term |
volume |
| Carrier type code |
volume |
| 505 ## - FORMATTED CONTENTS NOTE |
| Formatted contents note |
ABSTRACT: This study focuses on enhancing the Support Vector Machine (SVM) for credit risk classification by addressing limitations in training time, and data imbalance. Traditional SVM works by identifying the optimal hyperplane that linearly separates two data classes, but it can be resource-intensive and less effective with imbalanced data. To improve performance, the researchers proposed three key enhancements: improving the Quadratic Programming (QP) optimization using Dual Coordinate Descent (DCD) to reduce training time, applying the Adaptive Synthetic (ADASYN) technique to address data imbalance, and using Bayesian Optimization (BO) for hyperparameter tuning. These enhancements were tested on datasets of varying sizes: 500, 1k, 10K, 15k, and 30k samples. The DCD method significantly reduced training time across all sample sizes, averaging a 93.84% decrease (117.96 seconds). ADASYN improved classification accuracy by generating synthetic data for minority classes, effectively addressing imbalance, BO enabled optimal by hyperparameter selection, further increasing accuracy. The optimized āCā values for the linear kernel ranged from 0.1160 to 0.4031 across the datasets. Overall, the enhanced SVM----combining DCD, ADASYN, and BO---outperformed traditional SVM, showing a 7% improvement in accuracy, an 82.78% reduction in training time, and an 8% increase in precision. This comprehensive approach demonstrates that the improved SVM model offers a more accurate and efficient solution for credit risk analysis, making it a highly suitable tool for this application. |
| 526 ## - STUDY PROGRAM INFORMATION NOTE |
| Classification |
Filipiniana |
| 655 ## - INDEX TERM--GENRE/FORM |
| Genre/form data or focus term |
academic writing |
| 942 ## - ADDED ENTRY ELEMENTS |
| Source of classification or shelving scheme |
|
| Item type |
Thesis/Dissertation |