An enhancement of eigenface algorithm applied for identifying spoofing attacks in facial recognition (Record no. 37364)

000 -LEADER
fixed length control field 02780nam a22002417a 4500
003 - CONTROL NUMBER IDENTIFIER
control field FT8886
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20251217151545.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 251217b ||||| |||| 00| 0 eng d
041 ## - LANGUAGE CODE
Language code of text/sound track or separate title engtag
050 ## - LIBRARY OF CONGRESS CALL NUMBER
Classification number QA76.9 A43 C37 2025
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number .
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Carison, Ron Hale I.; Upaga, Chloe Gwyneth S.
245 ## - TITLE STATEMENT
Title An enhancement of eigenface algorithm applied for identifying spoofing attacks in facial recognition
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Materials specified .
Place of production, publication, distribution, manufacture .
Name of producer, publisher, distributor, manufacturer .
Date of production, publication, distribution, manufacture, or copyright notice c2025
300 ## - PHYSICAL DESCRIPTION
Other physical details Undergraduate Thesis: (Bachelor of Science in Computer Science) - Pamantasan ng Lungsod ng Maynila, 2025
336 ## - CONTENT TYPE
Source text
Content type term text
Content type code text
337 ## - MEDIA TYPE
Source unmediated
Media type term unmediated
Media type code unmediated
338 ## - CARRIER TYPE
Source volume
Carrier type term volume
Carrier type code volume
505 ## - FORMATTED CONTENTS NOTE
Formatted contents note ABSTRACT: The Eigenface Algorithm uses principal component analysis (PCA) to extract and represent facial features as eigenvectors for comparison with stored datasets. This is used for facial recognition that identifies individuals by extracting facial features and converting them into eigenvectors for comparison with stored datasets. However, it struggles with face occlusions, low-resolution images, and varying distances, affecting accuracy and increasing vulnerability to spoofing attacks. This research enhances the Eigenface Algorithm by integrating Super Resolution for improved facial feature extraction, LBPH for better occlusion and spoof detection, and a Distance-Based Scaling factor to optimize recognition within a 30 cm to 60 cm range. In this research, the researchers implemented OpenCV2 and stored the trained dataset in a YAML file. The dataset was generated by capturing multiple images across different environments and distances. The facial images were then preprocessed by resizing, converting to grayscale, incorporating Super-Resolution to enhance face image quality and applying LBPH for vector representation. Additionally, Distance Scaling was integrated to optimize facial recognition across varying distances. Results demonstrated improvements, with confidence levels reaching 90.79% and a substantial reduction in the error rate of 29.45%. The accuracy rate increased to 69.44%, while recognition time was remarkably decreased to just 0.0093 seconds. Additionally, the researchers recommend adapting the enhanced eigenface algorithm for other device types, 3D application and using larger dataset. These enhancements strengthen the algorithm’s resilience against spoofing attacks, augment its reliability in extracting intricate facial details amid noise, improve accuracy in recognizing occlusions and spoofed images, and enhance its usability in recognition attempts at unsuitable distances, thus enhancing usability in practical applications of facial recognition
526 ## - STUDY PROGRAM INFORMATION NOTE
Classification Filipiniana
655 ## - INDEX TERM--GENRE/FORM
Genre/form data or focus term academic writing
942 ## - ADDED ENTRY ELEMENTS
Source of classification or shelving scheme
Item type Thesis/Dissertation
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Collection code Permanent Location Current Location Shelving location Date acquired Total Checkouts Full call number Barcode Date last seen Price effective from Item type
          Filipiniana-Thesis PLM PLM Filipiniana Section 2025-10-24   QA76.9 A43 C37 2025 FT8886 2025-12-17 2025-12-17 Thesis/Dissertation

© Copyright 2024 Phoenix Library Management System - Pinnacle Technologies, Inc. All Rights Reserved.