000 04411nam a2201225Ia 4500
000 02289ntm a2200205 i 4500
001 76918
003 0
005 20250920163919.0
008 190311n 000 0 eng d
010 _z
_z
_o
_a
_b
015 _22
_a
016 _2
_2
_a
_z
020 _e
_e
_a
_b
_z
_c
_q
_x
022 _y
_y
_l
_a2
024 _2
_2
_d
_c
_a
_q
028 _a
_a
_b
029 _a
_a
_b
032 _a
_a
_b
035 _a
_a
_b
_z
_c
_q
037 _n
_n
_c
_a
_b
040 _e
_erda
_a
_d
_b
_c
041 _e
_e
_a
_b
_g
_h
_r
043 _a
_a
_b
045 _b
_b
_a
050 _a
_a
_d
_b2
_c0
051 _c
_c
_a
_b
055 _a
_a
_b
060 _a
_a
_b
070 _a
_a
_b
072 _2
_2
_d
_a
_x
082 _a
_a
_d
_b2
_c
084 _2
_2
_a
086 _2
_2
_a
090 _a
_a
_m
_b
_q
092 _f
_f
_a
_b
096 _a
_a
_b
097 _a
_a
_b
100 _e
_e
_aRodel B. Bernarbe; Knedrich Karl B. Luna and Edrianne T. Reyes.
_d
_b4
_u
_c0
_q16
110 _e
_e
_a
_d
_b
_n
_c
_k
111 _a
_a
_d
_b
_n
_c
130 _s
_s
_a
_p
_f
_l
_k
210 _a
_a
_b
222 _a
_a
_b
240 _s
_s
_a
_m
_g
_n
_f
_l
_o
_p
_k
245 0 _a
_aA Further Enhancement of Gale - Shapley Algorithm Applied to course preference incoming PLM Freshmen Students /
_d
_b
_n
_cRodel B. Bernarbe; Knedrich Karl B. Luna and Edrianne T. Reyes.
_h6
_p
246 _a
_a
_b
_n
_i
_f6
_p
249 _i
_i
_a
250 _6
_6
_a
_b
260 _e
_e
_a
_b
_f
_c
_g
264 _3
_3
_a
_d
_b
_cMarch 2012.46
300 _e
_e
_c28 cm.
_a147 pp.
_b
310 _a
_a
_b
321 _a
_a
_b
336 _b
_atext
_2rdacontent
337 _3
_30
_b
_aunmediated
_2rdamedia
338 _3
_30
_b
_avolume
_2rdacarrier
340 _2
_20
_g
_n
344 _2
_2
_a0
_b
347 _2
_2
_a0
362 _a
_a
_b
385 _m
_m
_a2
410 _t
_t
_b
_a
_v
440 _p
_p
_a
_x
_v
490 _a
_a
_x
_v
500 _a
_aUndergraduate Thesis (BS Computer Science) - Pamantasan ng Lungsod ng Maynila, 2012.
_d
_b
_c56
504 _a
_a
_x
505 _a
_a
_b
_t
_g
_r
506 _a
_a5
510 _a
_a
_x
520 _b
_b
_c
_aABSTRACT: The Gale-Shapley algorithm involves a number of rounds (or iterations) where each unengaged man proposes to the most-preferred woman to whom he has not yet proposed.Each woman then considers all her suitors and tells the one she most prefers Maybe and all the rest of them No.She is then provisionally engaged to the suitor she most prefers so far, and the suitor is likewise provisionally engaged to her. In the first round, a) each unengaged man proposes to the woman he prefers most, and then b) each woman replies maybe to her suitor she most prefers and no to all other suitors. In each subsequent round, first a) each unengaged man proposes to the most-preferred woman to whom he has not yet proposed (regardless of whether the woman is already engaged), and then b) each woman replies maybe to her suitor she most prefers (whether her existing provisional partner or someone else) and rejects the rest (again perhaps including her current provisional partner). The provisional nature of engagements preserves the right of an already-engaged woman to trade up (and, in the process, to jilt her until-then partner). The algorithm is applied to different stable matching problems like matching students to their preferred course. Students are matched according to their given course choices and the required average grade in the courses.
_u
521 _a
_a
_b
533 _e
_e
_a
_d
_b
_n
_c
540 _c
_c
_a5
542 _g
_g
_f
546 _a
_a
_b
583 _5
_5
_k
_c
_a
_b
590 _a
_a
_b
600 _b
_b
_v
_t
_c2
_q
_a
_x0
_z
_d
_y
610 _b
_b
_v
_t2
_x
_a
_k0
_p
_z
_d6
_y
611 _a
_a
_d
_n2
_c0
_v
630 _x
_x
_a
_d
_p20
_v
648 _2
_2
_a
650 _x
_x
_a
_d
_b
_z
_y20
_v
651 _x
_x
_a
_y20
_v
_z
655 _0
_0
_a
_y2
_z
700 _i
_i
_t
_c
_b
_s1
_q
_f
_k40
_p
_d
_e
_a
_l
_n6
710 _b
_b
_t
_c
_e
_f
_k40
_p
_d5
_l
_n6
_a
711 _a
_a
_d
_b
_n
_t
_c
730 _s
_s
_a
_d
_n
_p
_f
_l
_k
740 _e
_e
_a
_d
_b
_n
_c6
753 _c
_c
_a
767 _t
_t
_w
770 _t
_t
_w
_x
773 _a
_a
_d
_g
_m
_t
_b
_v
_i
_p
775 _t
_t
_w
_x
776 _s
_s
_a
_d
_b
_z
_i
_t
_x
_h
_c
_w
780 _x
_x
_a
_g
_t
_w
785 _t
_t
_w
_a
_x
787 _x
_x
_d
_g
_i
_t
_w
800 _a
_a
_d
_l
_f
_t0
_q
_v
810 _a
_a
_b
_f
_t
_q
_v
830 _x
_x
_a
_p
_n
_l0
_v
942 _a
_alcc
_cBK
999 _c10379
_d10379