000 06517nam a2201285Ia 4500
000 04884cam a2200529 i 4500
001 81105
003 0
005 20250920165132.0
006 m o d
007 cr |||||||||||
008 170531s2017 njua ob 001 0 eng
010 _z
_z
_o
_a2017026344
_b
015 _22
_a
016 _2
_2
_a
_z
020 _e
_e
_a9781119424215
_b
_z
_c
_qelectronic book
_x
022 _y
_y
_l
_a2
024 _2
_2
_d
_c
_a
_q
028 _a
_a
_b
029 _a
_a
_b
032 _a
_a
_b
035 _a
_a(OCoLC)988749084;(OCoLC)ocn988749084
_b
_z
_c
_q
037 _n
_n
_c
_a
_b
040 _e
_erda
_aDLC
_dOCLCO;DG1;N$T;YDX;IDEBK;EBLCP;YDX
_beng
_cDLC
041 _e
_e
_a
_b
_g
_h
_r
042 _apcc
043 _a
_a
_b
045 _b
_b
_a
049 _aMAIN
050 _a
_aHD38.7
_d
_b.S535 20172
_c0
051 _c
_c
_a
_b
055 _a
_a
_b
060 _a
_a
_b
070 _a
_a
_b
072 _2
_2bisacsh;bisacsh;bisacsh;bisacsh
_d
_aBUS;BUS;BUS;BUS
_x082000;041000;042000;085000
082 _a
_a658.4/033
_d
_b223
_c
084 _2
_2
_a
086 _2
_2
_a
090 _a
_a
_m
_b
_q
092 _f
_f
_a
_b
096 _a
_a
_b
097 _a
_a
_b
100 _e
_eauthor.
_aSimon, Phil,
_d
_b4
_u
_c0
_q16
110 _e
_e
_a
_d
_b
_n
_c
_k
111 _a
_a
_d
_b
_n
_c
130 _s
_s
_a
_p
_f
_l
_k
210 _a
_a
_b
222 _a
_a
_b
240 _s
_s
_a
_m
_g
_n
_f
_l
_o
_p
_k
245 0 _a
_aAnalytics :
_d
_bthe agile way /
_n
_cPhil Simon.
_h6
_p
246 _a
_a
_b
_n
_i
_f6
_p
249 _i
_i
_a
250 _6
_6
_a
_b
260 _e
_e
_a
_b
_f
_c
_g
264 _3
_3
_aHoboken, New Jersey :
_d
_bJohn Wiley & Sons, Inc.,
_c[2017]46
300 _e
_e
_c
_a1 online resource (xxix, 268 pages).
_b
310 _a
_a
_b
321 _a
_a
_b
336 _btxt
_atext
_2rdacontent
337 _3
_30
_bc
_acomputer
_2rdamedia
338 _3
_30
_bcr
_aonline resource
_2rdacarrier
340 _2
_20
_g
_n
344 _2
_2
_a0
_b
347 _2
_2
_a0
362 _a
_a
_b
385 _m
_m
_a2
410 _t
_t
_b
_a
_v
440 _p
_p
_a
_x
_v
490 _a
_aWiley & SAS Business Series
_x
_v
500 _a
_a
_d
_b
_c56
504 _a
_aIncludes bibliographical references and index.
_x
505 _a
_aPraise for Analytics: The Agile Way; Analytics; Wiley & SAS Business Series; Other Books by Phil Simon; Contents; Preface: The Power of Dynamic Data; Figures and Tables; Introduction: It Didn't Used to Be This Way; A Little History Lesson; Analytics and the Need for Speed; How Fast Is Fast Enough?; Automation: Still the Exception That Proves the Rule; Book Scope, Approach, and Style; Breadth over Depth; Methodology: Guidelines > Rules; Technical Sophistication; Vendor Agnosticism; Intended Audience; Plan of Attack; Next; Notes; Part ONE Background and Trends;Chapter 1: Signs of the Times: Why Data and Analytics Are Dominating Our WorldThe Moneyball Effect; Digitization and the Great Unbundling; Amazon Web Services and Cloud Computing; Not Your Father's Data Storage; How? Hadoop and the Growth of NoSQL; How Much? Kryder's Law; Moore's Law; The Smartphone Revolution; The Democratization of Data; The Primacy of Privacy; The Internet of Things; The Rise of the Data-Savvy Employee; The Burgeoning Importance of Data Analytics; A Watershed Moment; Common Ground; The Data Business Is Alive and Well and Flourishing; Not Just the Big Five;Data-Related ChallengesCompanies Left Behind; The Growth of Analytics Programs; Next; Notes; Chapter 2: The Fundamentals of Contemporary Data: A Primer on What It Is, Why It Matters, and How to Get It; Types of Data; Structured; Semistructured; Unstructured; Metadata; Getting the Data; Generating Data; Buying Data; Data in Motion; Next; Notes; Chapter 3: The Fundamentals of Analytics: Peeling Back the Onion; Defining Analytics; Reporting ` Analytics; Types of Analytics; Descriptive Analytics; Predictive Analytics; Prescriptive Analytics; Streaming Data Revisited; A Final Word on Analytics;NextNotes; Part TWO Agile Methods and Analytics; Chapter 4: A Better Way to Work: The Benefits and Core Values of Agile Development; The Case against Traditional Analytics Projects; Understandable but Pernicious; A Different Mind-Set at Netflix; Proving the Superiority of Agile Methods; The Case for Guidelines over Rules; Scarcity and Trade-Offs on Agile Projects; The Specific Tenets of Agile Analytics; Next; Notes; Chapter 5: Introducing Scrum: Looking at One of Today's Most Popular Agile Methods; A Very Brief History; Scrum Teams; Product Owner; Scrum Master; Team Member; User Stories;Epics: Too BroadToo Narrow/Detailed; Just Right; The Spike: A Special User Story; Backlogs; Sprints and Meetings; Sprint Planning; Daily Stand-Up; Story Time; Demo; Sprint Retrospective; Releases; Estimation Techniques; On Lawns and Relative Estimates; Fibonacci Numbers; T-Shirt Sizes; When Teams Disagree; Other Scrum Artifacts, Tools, and Concepts; Velocities; Burn-Down Charts; Definition of Done and Acceptance Criteria; Kanban Boards; Next; Chapter 6: A Framework for Agile Analytics: A Simple Model for Gathering Insights; Perform Business Discovery; Perform Data Discovery; Prepare the Data
_b
_t
_g
_r
506 _a
_a5
510 _a
_a
_x
520 _b
_b
_c
_a
_u
521 _a
_a
_b
533 _e
_e
_a
_d
_b
_n
_c
540 _c
_c
_a5
542 _g
_g
_f
546 _a
_a
_b
583 _5
_5
_k
_c
_a
_b
588 _aDescription based on online resource; title from digital title page (viewed on July 26, 2017).
590 _a
_a
_b
600 _b
_b
_v
_t
_c2
_q
_a
_x0
_z
_d
_y
610 _b
_b
_v
_t2
_x
_a
_k0
_p
_z
_d6
_y
611 _a
_a
_d
_n2
_c0
_v
630 _x
_x
_a
_d
_p20
_v
648 _2
_2
_a
650 _x
_xData processing.
_aBusiness intelligence;Decision making.
_d
_b
_z
_y20
_v
651 _x
_x
_a
_y20
_v
_z
655 _0
_0
_aElectronic books.
_y2
_z
700 _i
_i
_t
_c
_b
_s1
_q
_f
_k40
_p
_d
_e
_a
_l
_n6
710 _b
_b
_t
_c
_e
_f
_k40
_p
_d5
_l
_n6
_a
711 _a
_a
_d
_b
_n
_t
_c
730 _s
_s
_a
_d
_n
_p
_f
_l
_k
740 _e
_e
_a
_d
_b
_n
_c6
753 _c
_c
_a
767 _t
_t
_w
770 _t
_t
_w
_x
773 _a
_a
_d
_g
_m
_t
_b
_v
_i
_p
775 _t
_t
_w
_x
776 _s
_s
_aSimon, Phil, author.
_dHoboken, New Jersey : John Wiley & Sons, 2017
_b
_z9781119423478
_iPrint version:
_tAnalytics
_x
_h
_c
_w(DLC) 2017020140
780 _x
_x
_a
_g
_t
_w
785 _t
_t
_w
_a
_x
787 _x
_x
_d
_g
_i
_t
_w
800 _a
_a
_d
_l
_f
_t0
_q
_v
810 _a
_a
_b
_f
_t
_q
_v
830 _x
_x
_aWiley and SAS business series.
_p
_n
_l0
_v
942 _a
_alcc
_cBK
999 _c14937
_d14937