000 10090nam a2201225Ia 4500
000 08174cam a22002894i 4500
001 20396
003 0
005 20250920165524.0
008 110602s2011 nyu 000 0 eng
010 _z
_z
_o
_a
_b
015 _22
_a
016 _2
_2
_a
_z
020 _e
_e
_a9780415566889 (paperback);
_b
_z
_c
_q
_x
022 _y
_y
_l
_a2
024 _2
_2
_d
_c
_a
_q
028 _a
_a
_b
029 _a
_a
_b
032 _a
_a
_b
035 _a
_a(IMchF)fol13740765
_b
_z
_c
_q
037 _n
_n
_c
_a
_b
040 _e
_erda
_aDLC
_d
_b
_cDLC
041 _e
_e
_a
_b
_g
_h
_r
043 _a
_a
_b
045 _b
_b
_a
050 _a
_aHB139
_d
_b.S414 20112
_c0
051 _c
_c
_a
_b
055 _a
_a
_b
060 _a
_a
_b
070 _a
_a
_b
072 _2
_2
_d
_a
_x
082 _a
_a330.015195 Se27i 2012
_d
_b223
_c
084 _2
_2
_a
086 _2
_2
_a
090 _a
_a
_m
_b
_q
092 _f
_f
_a
_b
096 _a
_a
_b
097 _a
_a
_b
100 _e
_e
_aSeddighi, Hamid.
_d
_b4
_u
_c0
_q16
110 _e
_e
_a
_d
_b
_n
_c
_k
111 _a
_a
_d
_b
_n
_c
130 _s
_s
_a
_p
_f
_l
_k
210 _a
_a
_b
222 _a
_a
_b
240 _s
_s
_a
_m
_g
_n
_f
_l
_o
_p
_k
245 0 _a
_aIntroductory econometrics :
_d
_ba practical approach /
_n
_cHamid Seddighi.
_h6
_p
246 _a
_a
_b
_n
_i
_f6
_p
249 _i
_i
_a
250 _6
_6
_a
_b
260 _e
_e
_a
_b
_f
_c
_g
264 _3
_3
_aLondon :
_d
_bRoutledge/Taylor & Francis Group,
_c©201246
300 _e
_e
_c25 cm
_axvi, 383 pages :
_billustrations
310 _a
_a
_b
321 _a
_a
_b
336 _b
_atext
_2rdacontent
337 _3
_30
_b
_aunmediated
_2rdamedia
338 _3
_30
_b
_avolume
_2rdacarrier
340 _2
_20
_g
_n
344 _2
_2
_a0
_b
347 _2
_2
_a0
362 _a
_a
_b
385 _m
_m
_a2
410 _t
_t
_b
_a
_v
440 _p
_p
_a
_x
_v
490 _a
_a
_x
_v
500 _a
_aIncludes bibliographical references and index.
_d
_b
_c56
504 _a
_a
_x
505 _a
_aMachine generated contents note: Unit 1 Single-equation regression models 1.Economic theory and economic modelling in practice 1.1.Economic theory and modelling 1.2.Economic modelling in practice 1.3.Mathematical specification of the economic models 1.4.The need for the empirical evaluation of economic models: the econometrics approach 1.5.A summary of key issues Review questions 2.Formulating single-equation regression models 2.1.Towards developing an econometric model 2.2.The standard assumptions of the data generation process (DGP) 2.3.The two-variable classical normal linear regression (CNLR) model and its assumptions 2.4.Towards the formulation of a general single-equation regression model 2.5.The multiple linear regression model and its assumptions: the classical normal linear regression model (CNLRM) 2.6.A summary of the key assumptions of the multiple linear regression model 2.7.A summary of key issues Contents note continued: 3.Estimation of single-equation regression models: basic ideas, concepts and methods 3.1.Estimation of a single-equation regression model: basic ideas and concepts 3.2.Estimators and their sampling distributions 3.3.Estimation methods: the OLS and the ML estimators 3.4.Monte Carlo studies 3.5.Maximum likelihood (ML) estimators 3.6.A summary of key issues Key terms: Chapters 1 -3 4.Evaluation of the regression results: hypothesis testing and tests of significance 4.1.Econometric modelling in practice: a model of demand for competitive imports 4.2.Definition of variables, time series data, and the OLS estimation method 4.3.Criteria for the evaluation of the regression results 4.4.Tests of significance 4.5.Testing for linear restrictions on the parameters of the regression models 4.6.A summary of key issues 5.Autocorrelation, heteroscedasticity and diagnostic testing Contents note continued: 5.1.Econometric criteria of evaluation and diagnostic testing procedures 5.2.Autocorrelation: causes, consequences and detection - the Durbin-Watson test 5.3.Heteroscedasticity: causes, consequences and detection 5.4.A test of normality assumption: the Bera-Jarque (1987) (BJ) test 5.5.A summary of key issues 6.The phenomenon of the spurious regression, data generation process (DGP), and additional diagnostic tests 6.1.The phenomenon of the spurious regression 6.2.Making the regression model dynamic via a partial adjustment process: estimation and evaluation 6.3.The Chow test for parameter stability 6.4.Recursive estimation 6.5.Testing for measurement errors and errors in variables: the Hausman specification test 6.6.A summary of key issues Key terms: Chapters 4 -6 7.Dynamic econometric modelling: the distributed lag models Contents note continued: 7.1.A review of the classical normal linear multiple regression model 7.2.Cases from economic theory 7.3.The definitions 7.4.Estimation of distributed lag models 7.5.Restricted estimation of finite distributed lag models 7.6.Restricted estimation of infinite distributed lag models 7.7.Infinite distributed lag models and economic theory 7.8.Estimation methods of infinite distributed lag models 7.9.Diagnostic tests for models with lagged dependent variables 7.10.Illustrative examples of infinite distributed lag models 7.11.A summary of key issues Key terms: Chapter 7 General notes and bibliography: Unit 1 Unit 2 Simultaneous equation regression models 8.Simultaneous equation models and econometric analysis 8.1.Definitions and notation 8.2.Simultaneous equation bias 8.3.Coping with simultaneous equation bias 8.4.Identification 8.5.Conditions for identification Contents note continued: 8.6.Methods of estimation 8.7.Seemingly unrelated equations 8.8.Diagnostic tests for simultaneous equation models 8.9.A comparison of methods of estimation 8.10.A summary of key issues Key terms: Unit 2 General notes and bibliography: Unit 2 Unit 3 Qualitative variables in econometric models - panel data regression models 9.Dummy variable regression models 9.1.Dummy variables and regression analysis 9.2.No base group: regression with no intercept term 9.3.More than one qualitative variable influencing household consumption expenditure 9.4.Seasonal adjustments of data using seasonal dummies 9.5.Pooling cross-section data with time series data 9.6.Using dummy variables to test for parameter stability 9.7.A summary of key issues 10.Qualitative response regression models 10.1.The linear probability model (LPM) 10.2.The logit regression model Contents note continued: 10.3.The probit/​normit model 10.4.The logit/​probit regression models in practice 10.5.Multi-response qualitative dependent variable regression models 10.6.Ordered logit/​probit regression models 10.7.A summary of key issues 11.Panel data regression models 11.1.Examples of panel data regression 11.2.The nature of panel data regression and analysis 11.3.The fixed-effects model 11.4.The random-effects model 11.5.Panel data regression analysis in practice 11.6.A summary of key issues Key terms: Unit 3 General notes and bibliography: Unit 3 Unit 4 Time series econometrics 12.Stationary and non-stationary time series 12.1.The definitions 12.2.Models with deterministic and stochastic trends 12.3.Integrated time series 12.4.Testing for stationarity: the autocorrelation function 12.5.Using autocorrelation coefficients to test for stationarity Contents note continued: 12.6.A summary of key issues 13.Testing for stationarity: the unit root tests 13.1.The unit root methodology 13.2.The Dickey-Fuller (DF) test 13.3.The augmented Dickey-Fuller (ADF) test 13.4.Testing joint hypotheses with the Dickey-Fuller tests 13.5.Testing conditional hypotheses with the Dickey-Fuller tests 13.6.The multiple unit roots, the seasonal unit roots and the panel data unit root tests 13.7.Problems of the unit root tests and recommendations 13.8.A summary of key issues 14.Cointegration analysis: two-variable case 14.1.Spurious regression and cointegration analysis 14.2.Cointegration: definition and concept 14.3.Testing for cointegration 14.4.Cointegration: the estimation of error correction models (ECM) 14.5.A summary of key issues 15.Cointegration analysis: the multivariate case Contents note continued: 15.1.Cointegration of more than two variables: key ideas and concepts 15.2.Cointegration tests for the multivariate case 15.3.Cointegration: estimation of error correction models (ECM) 15.4.Vector autoregressions and cointegration 15.5.VAR and cointegration 15.6.The Granger causality test 15.7.A summary of key issues Key terms: Unit 4 General notes and bibliography: Unit 4 Unit 5 Aspects of financial time series econometrics 16.Modelling volatility and correlations in financial time series 16.1.Defining volatility and its features 16.2.Parametric estimators of volatility 16.3.Non-parametric estimators of volatility 16.4.Multivariate volatility and correlation models 16.5.A summary of key issues General notes and bibliography: Unit 5.
_b
_t
_g
_r
506 _a
_a5
510 _a
_a
_x
520 _b
_b
_c
_a
_u
521 _a
_a
_b
533 _e
_e
_a
_d
_b
_n
_c
540 _c
_c
_a5
542 _g
_g
_f
546 _a
_a
_b
583 _5
_5
_k
_c
_a
_b
590 _a
_a
_b
600 _b
_b
_v
_t
_c2
_q
_a
_x0
_z
_d
_y
610 _b
_b
_v
_t2
_x
_a
_k0
_p
_z
_d6
_y
611 _a
_a
_d
_n2
_c0
_v
630 _x
_x
_a
_d
_p20
_v
648 _2
_2
_a
650 _x
_x
_aEconometrics.
_d
_b
_z
_y20
_v
651 _x
_x
_a
_y20
_v
_z
655 _0
_0
_a
_y2
_z
700 _i
_i
_t
_c
_b
_s1
_q
_f
_k40
_p
_d
_e
_a
_l
_n6
710 _b
_b
_t
_c
_e
_f
_k40
_p
_d5
_l
_n6
_a
711 _a
_a
_d
_b
_n
_t
_c
730 _s
_s
_a
_d
_n
_p
_f
_l
_k
740 _e
_e
_a
_d
_b
_n
_c6
753 _c
_c
_a
767 _t
_t
_w
770 _t
_t
_w
_x
773 _a
_a
_d
_g
_m
_t
_b
_v
_i
_p
775 _t
_t
_w
_x
776 _s
_s
_a
_d
_b
_z
_i
_t
_x
_h
_c
_w
780 _x
_x
_a
_g
_t
_w
785 _t
_t
_w
_a
_x
787 _x
_x
_d
_g
_i
_t
_w
800 _a
_a
_d
_l
_f
_t0
_q
_v
810 _a
_a
_b
_f
_t
_q
_v
830 _x
_x
_a
_p
_n
_l0
_v
942 _a
_alcc
_cBK
999 _c16378
_d16378