000 10591nam a2201237Ia 4500
000 08719cam a2200337 i 4500
001 18787
003 0
005 20250920171043.0
008 111129s2013 fluab b 001 0 eng
010 _z
_z
_o
_a
_b
015 _22
_a
016 _2
_2
_a
_z
020 _e
_e
_a9781439852224 (hardback)
_b
_z
_c
_q
_x
022 _y
_y
_l
_a2
024 _2
_2
_d
_c
_a
_q
028 _a
_a
_b
029 _a
_a
_b
032 _a
_a
_b
035 _a
_a(IMchF)fol14003258
_b
_z
_c
_q
037 _n
_n
_c
_a
_b
040 _e
_erda
_aDLC
_dDLC
_b
_cDLC
041 _e
_e
_a
_b
_g
_h
_r
042 _apcc
043 _a
_a
_b
045 _b
_b
_a
050 _a
_aGB1001.7
_d
_b.K74 20132
_c0
051 _c
_c
_a
_b
055 _a
_a
_b
060 _a
_a
_b
070 _a
_a
_b
072 _2
_2
_d
_a
_x
082 _a
_a553.79 K884h 2013
_d
_b223
_c
084 _2
_2bisacsh
_aSCI026000;TEC010000;TEC010030
086 _2
_2
_a
090 _a
_a
_m
_b
_q
092 _f
_f
_a
_b
096 _a
_a
_b
097 _a
_a
_b
100 _e
_e
_aKrešić, Neven.
_d
_b4
_u
_c0
_q16
110 _e
_e
_a
_d
_b
_n
_c
_k
111 _a
_a
_d
_b
_n
_c
130 _s
_s
_a
_p
_f
_l
_k
210 _a
_a
_b
222 _a
_a
_b
240 _s
_s
_a
_m
_g
_n
_f
_l
_o
_p
_k
245 0 _a
_aHydrogeological conceptual site models :
_d
_bdata analysis and visualization /
_n
_cNeven Kresic, Alex Mikszewski.
_h6
_p
246 _a
_a
_b
_n
_i
_f6
_p
249 _i
_i
_a
250 _6
_6
_a
_b
260 _e
_e
_a
_b
_f
_c
_g
264 _3
_3
_aBoca Raton, FL :
_d
_bCRC Press/Taylor & Francis Group,
_c©201346
300 _e
_e1 CD-ROM (4 3/4 in.)
_c26 cm. +
_axv, 584 pages :
_billustrations (some color), maps
310 _a
_a
_b
321 _a
_a
_b
336 _b
_atext
_2rdacontent
337 _3
_30
_b
_aunmediated
_2rdamedia
338 _3
_30
_b
_avolume
_2rdacarrier
340 _2
_20
_g
_n
344 _2
_2
_a0
_b
347 _2
_2
_a0
362 _a
_a
_b
385 _m
_m
_a2
410 _t
_t
_b
_a
_v
440 _p
_p
_a
_x
_v
490 _a
_a
_x
_v
500 _a
_a
_d
_b
_c56
504 _a
_aIncludes bibliographical references and index.
_x
505 _a
_aMachine generated contents note: 1.Introduction 1.1.Historical Example 1.2.Example Uses of This Book References 2.Conceptual Site Models 2.1.Definition 2.2.Physical Profile 2.2.1.Geomorphology (Topography) 2.2.2.Hydrology 2.2.3.Climate (Hydrometeorology) 2.2.4.Land Use and Land Cover 2.2.5.Water Budget 2.3.Hydrogeology 2.3.1.Aquifers in Unconsolidated Sediments 2.3.1.1.Alluvial Aquifers 2.3.1.2.Basin-Fill Aquifers 2.3.1.3.Blanket Sand-and-Gravel Aquifers 2.3.1.4.Aquifers in Semiconsolidated Sediments 2.3.1.5.Glacial-Deposit Aquifers 2.3.2.Sandstone Aquifers 2.3.3.Fractured-Bedrock Aquifers 2.3.4.Karst Aquifers 2.3.5.Basaltic and Other Volcanic Rock Aquifers 2.3.6.Aquitards 3.Data Management, GIS, and GIS Modules 3.1.Introduction 3.2.Data Management for GIS 3.2.1.Data Management Failures 3.2.1.1.Working with the Wrong Units Contents note continued: 3.2.1.2.Working with Unknown or Mixed Coordinate Systems 3.2.1.3.Erroneous Query Results 3.2.1.4.Data Entry Inefficiency 3.2.2.Data Management Systems 3.2.2.1.Define the Project Objective 3.2.2.2.Determine the Quantity and Type of Field and Laboratory Data to Be Collected 3.2.2.3.Perform Required Data Collection and Analysis 3.2.2.4.Present Study Conclusions 3.3.Introducing the Geodatabase 3.3.1.Tables 3.3.2.Feature Classes 3.3.3.Rasters 3.4.Basics of Geodatabase Design 3.4.1.Table Format and Querying 3.4.1.1.Select Query 3.4.1.2.Cross-Tab Query 3.4.1.3.Forms 3.4.2.Data Linkage with GIS 3.4.3.Errors in Geodatabase Design 3.4.3.1.Fields with Wrong Data Type 3.4.3.2.Spaces in Data Field Names 3.4.3.3.Misspellings and Format Discrepancies 3.4.3.4.Cross-Tab Query Difficulties 3.4.3.5.Inconsistent or Unknown Coordinate Systems 3.5.Working with Coordinate Systems Contents note continued: 3.6.Data Visualization and Processing with ArcGIS 3.6.1.Why Visualize Data? 3.6.2.Analog versus Digital Data 3.6.3.Data Visualization in ArcMap 3.6.3.1.Data View 3.6.3.2.Layout View 3.6.4.Geoprocessing in ArcMap 3.6.4.1.Querying Tools 3.6.4.2.Labeling Tools 3.6.4.3.Editing Tools 3.6.4.4.Georeferencing Tools 3.6.4.5.Analysis Tools 3.6.4.6.Measurement Tools 3.6.4.7.Data Management Tools 3.7.GIS Modules for Hydrogeological Data Analysis 3.7.1.Statistical Analyses 3.7.1.1.Visual Sample Plan 3.7.1.2.FIELDS Rapid Assessment Tool Software 3.7.1.3.Spatial Analysis and Decision Assistance 3.7.1.4.ArcToolbox 3.7.1.5.ProUCL 3.7.1.6.Monitoring and Remediation Optimization System 3.7.1.7.Other Tools 3.7.2.Geostatistics and Contouring 3.7.3.Boring Logs and Cross Sections 3.7.4.Proprietary Environmental Database Systems 3.7.5.General Notes on Computer Modules 4.Contouring Contents note continued: 4.1.Introduction 4.2.Contouring Methods 4.2.1.Manual Contouring 4.2.2.Contouring with Computer Programs 4.2.3.Spatial Interpolation Models 4.2.3.1.Deterministic Models 4.2.3.2.Geostatistical Models 4.2.3.3.Trend and Anisotropy 4.2.3.4.Error and Uncertainty Analysis 4.3.Kriging 4.3.1.Variography 4.3.1.1.Semivariogram Curve-Fitting 4.3.1.2.Search Neighborhood 4.3.1.3.Modeling Techniques 4.3.2.Kriging Prediction Standard Error 4.3.2.1.Nugget Effect and Prediction Standard Error 4.3.3.Types of Kriging 4.3.3.1.Ordinary, Simple, and Universal Kriging 4.3.3.2.Cokriging 4.3.3.3.Indicator Kriging 4.3.3.4.Point and Block Kriging 4.4.Contouring Potentiometric Surfaces 4.4.1.Importance of Conceptual Site Model 4.4.2.Heterogeneity and Anisotropy 4.4.3.Influence of Hydraulic Boundaries 4.5.Contouring Contaminant Concentrations 4.5.1.Importance of Conceptual Site Model Contents note continued: 4.5.2.Example Application 4.5.2.1.Default Parameters 4.5.2.2.Data Exploration 4.5.2.3.Lognormal Kriging with Anisotropy 4.5.2.4.Lognormal Kriging with Trend Removal 4.5.2.5.Model Comparison 4.5.2.6.Advanced Detrending and Cokriging 4.5.2.7.Advanced Uncertainty Analysis 4.5.3.Summary 4.6.Grid and Contour Conversion Tools 4.6.1.Converting Contour Maps to Grid Files 4.6.2.Converting Grid File Types 4.6.3.Extracting Grid Values to Points 4.6.4.Appropriate Use of Spatial Analyst 5.Groundwater Modeling 5.1.Introduction 5.2.Misuse of Groundwater Models 5.3.Types of Groundwater Models 5.3.1.Analytical Models 5.3.1.1.BIOCHLOR Case Study 5.3.2.Numerical Models 5.4.Numerical Modeling Concepts 5.4.1.Initial Conditions, Boundary Conditions, and Water Fluxes 5.4.2.Dispersion and Diffusion 5.5.Model Calibration, Sensitivity Analysis, and Error Contents note continued: 5.6.Modeling Documentation and Standards 5.7.MODFLOW-USG 5.7.1.Description of Method 5.7.2.Input and Output 5.7.3.Benchmarking and Testing 5.8.Variably Saturated Models 5.9.GIS and Numerical Modeling Software 6.Three-Dimensional Visualizations 6.1.Introduction 6.2.3D Conceptual Site Model Visualizations 6.2.1.3D Views of Geologic Model 6.2.2.4D Views of Groundwater Chemistry 6.2.3.Views of 3D Plumes and Soil Plumes 6.2.4.Specialty 3D Visualizations Citations 7.Site Investigation 7.1.Data and Products in Public Domain 7.1.1.USGS Data and Publications 7.1.2.State GIS Data 7.2.Database Coordination 7.3.Georeferencing 7.3.1.Georeferencing AutoCAD Data 7.3.2.Georeferencing Raster Data 7.4.Developing a Site Basemap 7.5.Developing and Implementing Sampling Plans 7.5.1.Developing Sampling Plans 7.5.1.1.Systematic Planning to Balance Cost and Risk Contents note continued: 7.5.1.2.Example Application of Visual Sample Plan 7.5.2.Implementing Sampling Plans 7.5.2.1.Data Collection 7.5.2.2.Real-Time Data Management, Analysis, and Visualization 7.6.Example Visualizations for Site Investigation Data 7.6.1.Plan-View Maps 7.6.2.Boring Logs and Cross Sections 7.6.3.Graphs and Charts 7.7.Toxic Gingerbread Men and Other Confounders 8.Groundwater Remediation 8.1.Introduction 8.2.Pump and Treat 8.2.1.Introduction 8.2.2.Design Concepts 8.2.3.System Optimization 8.3.In Situ Remediation 8.3.1.Introduction 8.3.2.In Situ Thermal Treatment 8.3.2.1.Design Concepts 8.3.2.2.Case Study 8.3.3.In Situ Chemical Oxidation 8.3.3.1.Design Concepts 8.3.3.2.Case Study 8.3.4.Bioremediation and Monitored Natural Attenuation 8.3.4.1.In Situ Bioremediation 8.3.4.2.Monitored Natural Attenuation 8.4.Alternative Remedial Endpoints and Metrics 8.4.1.Motivation Contents note continued: 8.4.2.Technical Impracticability 8.4.3.Risk-Based Cleanup Goals 8.4.4.Mass Flux 8.5.The Way Forward: Sustainable Remediation 9.Groundwater Supply 9.1.Integrated Water Resources Management 9.2.Groundwater Supply 9.2.1.Groundwater Quantity 9.2.2.Groundwater Quality 9.2.2.1.Protection of Groundwater 9.2.3.Groundwater Extraction 9.3.Groundwater Sustainability 9.3.1.Sustainable Groundwater Use Case Study: Plant Washington 9.3.2.Sustainable Groundwater Use: Conclusion References.
_b
_t
_g
_r
506 _a
_a5
510 _a
_a
_x
520 _b
_b
_c
_aFrom their origins, exploration and inquiry in the earth sciences have been dependent on conceptual models and data visualizations to test theories and convey findings to the general public. One can appreciate the power and importance of conceptual graphics by flipping through the pages of a National Geographic magazine. Data visualization is inextricably linked to quantitative spatial data analysis - the two major forms of which, for the earth sciences, are statistical interpolation and modeling--Provided by publisher.
_u
521 _a
_a
_b
533 _e
_e
_a
_d
_b
_n
_c
540 _c
_c
_a5
542 _g
_g
_f
546 _a
_a
_b
583 _5
_5
_k
_c
_a
_b
590 _a
_a
_b
600 _b
_b
_v
_t
_c2
_q
_a
_x0
_z
_d
_y
610 _b
_b
_v
_t2
_x
_a
_k0
_p
_z
_d6
_y
611 _a
_a
_d
_n2
_c0
_v
630 _x
_x
_a
_d
_p20
_v
648 _2
_2
_a
650 _x
_xMethodology.
_aGroundwater.;Hydrology
_d
_b
_z
_y20
_v
651 _x
_x
_a
_y20
_v
_z
655 _0
_0
_a
_y2
_z
700 _i
_i
_t
_c
_b
_s1
_q
_f
_k40
_p
_d
_eco-author.
_aMikszewski, Alex,
_l
_n6
710 _b
_b
_t
_c
_e
_f
_k40
_p
_d5
_l
_n6
_a
711 _a
_a
_d
_b
_n
_t
_c
730 _s
_s
_a
_d
_n
_p
_f
_l
_k
740 _e
_e
_a
_d
_b
_n
_c6
753 _c
_c
_a
767 _t
_t
_w
770 _t
_t
_w
_x
773 _a
_a
_d
_g
_m
_t
_b
_v
_i
_p
775 _t
_t
_w
_x
776 _s
_s
_a
_d
_b
_z
_i
_t
_x
_h
_c
_w
780 _x
_x
_a
_g
_t
_w
785 _t
_t
_w
_a
_x
787 _x
_x
_d
_g
_i
_t
_w
800 _a
_a
_d
_l
_f
_t0
_q
_v
810 _a
_a
_b
_f
_t
_q
_v
830 _x
_x
_a
_p
_n
_l0
_v
942 _a
_alcc
_cBK
999 _c17776
_d17776