000 04372nam a2201273Ia 4500
000 02703cam a2200505Ii 4500
001 81102
003 0
005 20250920171829.0
006 m o d
007 cr cnu|||unuuu
008 170601s2017 enk ob 001 0 eng d
010 _z
_z
_o
_a
_b
015 _22
_a
016 _2
_2
_a
_z
020 _e
_e
_a9781119426516;1119426510
_b
_z9781786300096
_c
_q(electronic bk.);(electronic bk.)
_x
022 _y
_y
_l
_a2
024 _2
_2doi
_d
_c
_a10.1002/9781119426516
_q
028 _a
_a
_b
029 _a
_a
_b
032 _a
_a
_b
035 _a
_a(OCoLC)988602810;(OCoLC)ocn988602810
_b
_z
_c
_q
037 _n
_n
_c
_a
_b
040 _e
_erda;pn
_aDG1
_dN$T;YDX;OCLCF
_beng
_cDG1
041 _e
_e
_a
_b
_g
_h
_r
043 _a
_a
_b
045 _b
_b
_a
049 _aMAIN
050 _a
_aQA322.2
_d
_b2
_c0
051 _c
_c
_a
_b
055 _a
_a
_b
060 _a
_a
_b
070 _a
_a
_b
072 _2
_2bisacsh;bisacsh
_d
_aMAT;MAT
_x005000;034000
082 _a
_a515/.732
_d
_b223
_c
084 _2
_2
_a
086 _2
_2
_a
090 _a
_a
_m
_b
_q
092 _f
_f
_a
_b
096 _a
_a
_b
097 _a
_a
_b
100 _e
_eauthor.
_aSimon, Jacques C. H.
_d1945-
_b4
_u
_c0
_q(Jacques Charles Henri),16
110 _e
_e
_a
_d
_b
_n
_c
_k
111 _a
_a
_d
_b
_n
_c
130 _s
_s
_a
_p
_f
_l
_k
210 _a
_a
_b
222 _a
_a
_b
240 _s
_s
_a
_m
_g
_n
_f
_l
_o
_p
_k
245 0 _a
_aBanach, Fréchet, Hilbert and Neumann spaces /
_d
_b
_n
_cJacques Simon.
_h6
_p
246 _a
_a
_b
_n
_i
_f6
_p
249 _i
_i
_a
250 _6
_6
_a
_b
260 _e
_e
_a
_b
_f
_c
_g
264 _3
_3
_aLondon, UK :;Hoboken, NJ :
_d
_bISTE, Ltd. ;;Wiley,
_c201746
300 _e
_e
_c
_a1 online resource.
_b
310 _a
_a
_b
321 _a
_a
_b
336 _btxt
_atext
_2rdacontent
337 _3
_30
_bc
_acomputer
_2rdamedia
338 _3
_30
_bcr
_aonline resource
_2rdacarrier
340 _2
_20
_g
_n
344 _2
_2
_a0
_b
347 _2
_2
_a0
362 _a
_a
_b
385 _m
_m
_a2
410 _t
_t
_b
_a
_v
440 _p
_p
_a
_x
_v
490 _a
_aAnalysis for PDEs set
_x
_vvolume 1
500 _a
_a
_d
_b
_c56
504 _a
_aIncludes bibliographical references and index.
_x
505 _a
_aPrerequisites -- SEMI-NORMED SPACES. Semi-normed Spaces -- Comparison of Semi-normed Spaces -- Banach, Fréchet and Neumann Spaces -- Hilbert Spaces -- Product, Intersection, Sum and Quotient of Spaces -- CONTINUOUS MAPPINGS. Continuous Mappings -- Images of Sets Under Continuous Mappings -- Properties of Mappings in Metrizable Spaces -- Extension of Mappings, Equicontinuity -- Compactness in Mapping Spaces -- Spaces of Linear or Multilinear Mappings -- WEAK TOPOLOGIES. Duality -- Dual of a Subspace -- Weak Topology -- Properties of Sets for the Weak Topology -- Reflexivity -- Extractable Spaces -- DIFFERENTIAL CALCULUS. Differentiable Mappings -- Differentiation of Multivariable Mappings -- Successive Differentiations -- Derivation of Functions of One Real Variable.
_b
_t
_g
_r
506 _a
_a5
510 _a
_a
_x
520 _b
_b
_c
_a
_u
521 _a
_a
_b
533 _e
_e
_a
_d
_b
_n
_c
540 _c
_c
_a5
542 _g
_g
_f
546 _a
_a
_b
583 _5
_5
_k
_c
_a
_b
588 _aOnline resource; title from PDF title page (John Wiley, viewed June 1, 2017).
590 _a
_a
_b
600 _b
_b
_v
_t
_c2
_q
_a
_x0
_z
_d
_y
610 _b
_b
_v
_t2
_x
_a
_k0
_p
_z
_d6
_y
611 _a
_a
_d
_n2
_c0
_v
630 _x
_x
_a
_d
_p20
_v
648 _2
_2
_a
650 _x
_x
_aBanach spaces.;Fréchet spaces.;MATHEMATICS / Calculus;MATHEMATICS / Mathematical Analysis;Banach spaces.;Fréchet spaces.
_d
_b
_z
_y
_2bisacsh;bisacsh;fast;fast
_0(OCoLC)fst00826389;(OCoLC)fst00935782
_v
651 _x
_x
_a
_y20
_v
_z
655 _0
_0
_aElectronic books.
_y2
_z
700 _i
_i
_t
_c
_b
_s1
_q
_f
_k40
_p
_d
_e
_a
_l
_n6
710 _b
_b
_t
_c
_e
_f
_k40
_p
_d5
_l
_n6
_a
711 _a
_a
_d
_b
_n
_t
_c
730 _s
_s
_a
_d
_n
_p
_f
_l
_k
740 _e
_e
_a
_d
_b
_n
_c6
753 _c
_c
_a
767 _t
_t
_w
770 _t
_t
_w
_x
773 _a
_a
_d
_g
_m
_t
_b
_v
_i
_p
775 _t
_t
_w
_x
776 _s
_s
_a
_d
_b
_z
_i
_t
_x
_h
_c
_w
780 _x
_x
_a
_g
_t
_w
785 _t
_t
_w
_a
_x
787 _x
_x
_d
_g
_i
_t
_w
800 _a
_a
_d
_l
_f
_t0
_q
_v
810 _a
_a
_b
_f
_t
_q
_v
830 _x
_x
_aAnalysis for PDEs set
_p
_n
_l0
_vvolume 1.
942 _a
_alcc
_cBK
999 _c20712
_d20712