000 06044nam a2201285Ia 4500
000 05677cam a2200589Ii 4500
001 81043
003 0
005 20250920171846.0
006 m o d
007 cr cnu|||unuuu
008 180529s2018 enk ob 001 0 eng d
010 _z
_z
_o
_a
_b
015 _2
_2bnb
_aGBB887202
016 _2
_2Uk
_a18864699
_z
019 _a1038058507
020 _e
_e
_a9781119426813
_b
_z
_c
_qelectronic book
_x
022 _y
_y
_l
_a2
024 _2
_2
_d
_c
_a
_q
028 _a
_a
_b
029 _a
_aCHVBK;CHNEW;UKMGB
_b516431056;001003325;018864699
032 _a
_a
_b
035 _a
_a(OCoLC)1037946124;(OCoLC)on1037946124
_b
_z(OCoLC)1038058507
_c
_q
037 _n
_n
_c
_a9781119528074
_bWiley
040 _e
_erda;pn
_aN$T
_dN$T;EBLCP;DG1;YDX;OCLCF;RECBK;MERER;UAB;OCLCQ;NLE;UKMGB
_beng
_cN$T
041 _e
_e
_a
_b
_g
_h
_r
043 _a
_a
_b
045 _b
_b
_a
049 _aMAIN
050 _a
_aQA8.4
_d
_b2
_c0
051 _c
_c
_a
_b
055 _a
_a
_b
060 _a
_a
_b
070 _a
_a
_b
072 _2
_2bisacsh;bisacsh;bisacsh
_d
_aMAT;MAT;MAT
_x039000;023000;026000
082 _a
_a510.1
_d
_b223
_c
084 _2
_2
_a
086 _2
_2
_a
090 _a
_a
_m
_b
_q
092 _f
_f
_a
_b
096 _a
_a
_b
097 _a
_a
_b
100 _e
_eauthor.
_aParrochia, Daniel,
_d1951-
_b4
_u
_c0
_q16
110 _e
_e
_a
_d
_b
_n
_c
_k
111 _a
_a
_d
_b
_n
_c
130 _s
_s
_a
_p
_f
_l
_k
210 _a
_a
_b
222 _a
_a
_b
240 _s
_s
_a
_m
_g
_n
_f
_l
_o
_p
_k
245 0 _a
_aMathematics and philosophy /
_d
_b
_n
_cDaniel Parrochia.
_h6
_p
246 _a
_a
_b
_n
_i
_f6
_p
249 _i
_i
_a
250 _6
_6
_a
_b
260 _e
_e
_a
_b
_f
_c
_g
264 _3
_3
_aLondon :;Hoboken, NJ :
_d
_bISTE Ltd ;;John Wiley & Sons, Inc.,
_c[2018]46
300 _e
_e
_c
_a1 online resource.
_b
310 _a
_a
_b
321 _a
_a
_b
336 _btxt
_atext
_2rdacontent
337 _3
_30
_bc
_acomputer
_2rdamedia
338 _3
_30
_bcr
_aonline resource
_2rdacarrier
340 _2
_20
_g
_n
344 _2
_2
_a0
_b
347 _2
_2
_a0
362 _a
_a
_b
385 _m
_m
_a2
410 _t
_t
_b
_a
_v
440 _p
_p
_a
_x
_v
490 _a
_aMathematics and statistics series
_x
_v
500 _a
_a
_d
_b
_c56
504 _a
_aIncludes bibliographical references and index.
_x
505 _a
_aIntro; Table of Contents; Introduction; PART: 1 The Contribution of Mathematician-Philosophers; Introduction to Part 1; 1 Irrational Quantities; 1.1. The appearance of irrationals or the end of the Pythagorean dream; 1.2. The first philosophical impact; 1.3. Consequences of the discovery of irrationals; 1.4. Possible solutions; 1.5. A famous example: the golden number; 1.6. Plato and the dichotomic processes; 1.7. The Platonic generalization of ancient Pythagoreanism; 1.8. Epistemological consequences: the evolution of reason; 2 All About the Doubling of the Cube;6 Complexes, Logarithms and Exponentials6.1. The road to complex numbers; 6.2. Logarithms and exponentials; 6.3. De Moivre's and Euler's formulas; 6.4. Consequences on Hegelian philosophy; 6.5. Euler's formula; 6.6. Euler, Diderot and the existence of God; 6.7. The approximation of functions; 6.8. Wronski's philosophy and mathematics; 6.9. Historical positivism and spiritual metaphysics; 6.10. The physical interest of complex numbers; 6.11. Consequences on Bergsonian philosophy; PART: 3 Significant Advances; Introduction to Part 3; 7 Chance, Probability and Metaphysics;7.1. Calculating probability: a brief history7.2. Pascal's wager; 7.3. Social applications, from Condorcet to Musil; 7.4. Chance, coincidences and omniscience; 8 The Geometric Revolution; 8.1. The limits of the Euclidean demonstrative ideal; 8.2. Contesting Euclidean geometry; 8.3. Bolyai's and Lobatchevsky geometries; 8.4. Riemann's elliptical geometry; 8.5. Bachelard and the philosophy of non; 8.6. The unification of Geometry by Beltrami and Klein; 8.7. Hilbert's axiomatization; 8.8. The reception of non-Euclidean geometries; 8.9. A distant impact: Finsler's philosophy
_b
_t
_g
_r
506 _a
_a5
510 _a
_a
_x
520 _b
_b
_c
_aThis book, which studies the links between mathematics and philosophy, highlights a reversal. Initially, the (Greek) philosophers were also mathematicians (geometers). Their vision of the world stemmed from their research in this field (rational and irrational numbers, problem of duplicating the cube, trisection of the angle...). Subsequently, mathematicians freed themselves from philosophy (with Analysis, differential Calculus, Algebra, Topology, etc.), but their researches continued to inspire philosophers (Descartes, Leibniz, Hegel, Husserl, etc.). However, from a certain level of complexity, the mathematicians themselves became philosophers (a movement that begins with Wronsky and Clifford, and continues until Grothendieck).
_u
521 _a
_a
_b
533 _e
_e
_a
_d
_b
_n
_c
540 _c
_c
_a5
542 _g
_g
_f
546 _a
_a
_b
583 _5
_5
_k
_c
_a
_b
588 _aOnline resource; title from PDF title page (EBSCO, viewed May 30, 2018).
590 _a
_a
_b
600 _b
_b
_v
_t
_c2
_q
_a
_x0
_z
_d
_y
610 _b
_b
_v
_t2
_x
_a
_k0
_p
_z
_d6
_y
611 _a
_a
_d
_n2
_c0
_v
630 _x
_x
_a
_d
_p20
_v
648 _2
_2
_a
650 _x
_xPhilosophy.
_aMathematics
_d
_b
_z
_y20
_v
651 _x
_x
_a
_y20
_v
_z
655 _0
_0
_aElectronic books.
_y2
_z
700 _i
_i
_t
_c
_b
_s1
_q
_f
_k40
_p
_d
_e
_a
_l
_n6
710 _b
_b
_t
_c
_e
_f
_k40
_p
_d5
_l
_n6
_a
711 _a
_a
_d
_b
_n
_t
_c
730 _s
_s
_a
_d
_n
_p
_f
_l
_k
740 _e
_e
_a
_d
_b
_n
_c6
753 _c
_c
_a
767 _t
_t
_w
770 _t
_t
_w
_x
773 _a
_a
_d
_g
_m
_t
_b
_v
_i
_p
775 _t
_t
_w
_x
776 _s
_s
_a
_d
_b
_z1786302098;9781786302090
_i
_t
_x
_h
_cOriginal
_w(OCoLC)1011012502
780 _x
_x
_a
_g
_t
_w
785 _t
_t
_w
_a
_x
787 _x
_x
_d
_g
_i
_t
_w
800 _a
_a
_d
_l
_f
_t0
_q
_v
810 _a
_a
_b
_f
_t
_q
_v
830 _x
_x
_aMathematics and statistics series (ISTE)
_p
_n
_l0
_v
942 _a
_alcc
_cBK
999 _c20821
_d20821