000 06777nam a2201225Ia 4500
000 04604ntm a2200217 i 4500
001 76548
003 0
005 20250920172520.0
008 190220n 000 0 eng d
010 _z
_z
_o
_a
_b
015 _22
_a
016 _2
_2
_a
_z
020 _e
_e
_a
_b
_z
_c
_q
_x
022 _y
_y
_l
_a2
024 _2
_2
_d
_c
_a
_q
028 _a
_a
_b
029 _a
_a
_b
032 _a
_a
_b
035 _a
_a
_b
_z
_c
_q
037 _n
_n
_c
_a
_b
040 _e
_erda
_a
_d
_b
_c
041 _e
_e
_a
_b
_g
_h
_r
043 _a
_a
_b
045 _b
_b
_a
050 _a
_a
_d
_b2
_c0
051 _c
_c
_a
_b
055 _a
_a
_b
060 _a
_a
_b
070 _a
_a
_b
072 _2
_2
_d
_a
_x
082 _a
_a
_d
_b2
_c
084 _2
_2
_a
086 _2
_2
_a
090 _a
_a
_m
_b
_q
092 _f
_f
_a
_b
096 _a
_a
_b
097 _a
_a
_b
100 _e
_e
_aLovelle Eriel R. Friginal and Shiela Marie A. Lopez.
_d
_b4
_u
_c0
_q16
110 _e
_e
_a
_d
_b
_n
_c
_k
111 _a
_a
_d
_b
_n
_c
130 _s
_s
_a
_p
_f
_l
_k
210 _a
_a
_b
222 _a
_a
_b
240 _s
_s
_a
_m
_g
_n
_f
_l
_o
_p
_k
245 0 _a
_aAN ENHANCEMENT OF TEXT DETECTION ALGORITHM WITH THE USE OF STROKE WIDTH TRANSFORM /
_d
_b
_n
_cLovelle Eriel R. Friginal and Shiela Marie A. Lopez.
_h6
_p
246 _a
_a
_b
_n
_i
_f6
_p
249 _i
_i
_a
250 _6
_6
_a
_b
260 _e
_e
_a
_b
_f
_c
_g
264 _3
_3
_a
_d
_b
_cMarch 2015.46
300 _e
_e
_c28 cm.
_a40 pp.
_b
310 _a
_a
_b
321 _a
_a
_b
336 _b
_atext
_2rdacontent
337 _3
_30
_b
_aunmediated
_2rdamedia
338 _3
_30
_b
_avolume
_2rdacarrier
340 _2
_20
_g
_n
344 _2
_2
_a0
_b
347 _2
_2
_a0
362 _a
_a
_b
385 _m
_m
_a2
410 _t
_t
_b
_a
_v
440 _p
_p
_a
_x
_v
490 _a
_a
_x
_v
500 _a
_aABSTRACT: Optical character recognition (OCR) is the electronic conversion of images with printed text into editable text. It is widely used as a form of data entry from printed paper data records, whether passport documents, invoices, bank statement, receipts, business card, mail, or other documents. It is a common method of digitizing printed texts from images so that it can be electronically edited, searched, stored more compactly, displayed on-line, and used in machine processes such as word translation and search, data extraction and text mining . OCR is a field of research in pattern recognition, artificial intelligence and computer vision. The researchers study one of the latest published OCR algorithm entitled Text Detection Algorithm with the use of Stroke Width Transform and found some weak points on the said algorithm. The proponents improved the Text Detection algorithm that is embedded in an optical character recognition application. The study added some enhancements in address to the three major drawbacks of the existing algorithm namely: Ineffectivity of the recognition of concave curve texts; Inaccuracy of recognition of similar looking characters; and Production of high false positive or detected image region where there is no existence of text. The proponents proposed a novel text detection approach that gave solution to the said text detection problems. The project aimed the reduction of the rate of false positives through an enhanced version of the Stroke Width Transform algorithm for the accurate detection and localization of text regions in an image. The proposed algorithm also improved the detection and localization of text regions in an image. The proposed algorithm also improved the detection and recognition of similar looking characters and concave curve texts. The researchers used the Descriptive Research method and Quota Sampling Technique that helped them gather essential information about the text detection algorithm. Through conducting a survey and with adequate interpretation of results, the proponents were able to collect data and identify the advantages and disadvantages of the existing algorithm and used it as their basis in defining the statement of the problems and objectives of the study. The proponents modified the existing algorithm to improve its performance. The proponents provided the necessary information about the existing and enhanced algorithm. They also provided simulations and sample screen shots for the readers to further understand what text detection algorithm is all about. The proponents created an enhanced application that answers the problems stated on this study. An efficient algorithm was used to build the application which can accurately detect, localize and extract text regions in images with complex backgrounds. The resulting system was able to detect, recognize and differentiate similar looking characters and concave curve texts. The proponents also presented the results of the enhancements that they have formulated that made the algorithm efficient in terms of detection of text regions in an image and recognition of similar looking characters and concave curve texts. Text detection algorithm used in character recognition in images is an important approach used to achieve multimedia content retrieval. The proposed algorithm is based on the addition of new steps to the existing algorithm such as the conversion of image to tagged image file format, thresholding and the application of MODI or Microsoft Office Document Imaging. Our proposal is robust enough to accurately localize text regions, effectively recognize concave curve texts and perfectly differentiate similar looking characters.;BACHELOR OF SCIENCE IN COMPUTER STUDIES MAJOR N COMPUTER SCIENCE.;Thesis (Undergraduate) Pamantasan ng Lungsod ng Maynila, 2015.
_d
_b
_c56
504 _a
_a
_x
505 _a
_a
_b
_t
_g
_r
506 _a
_a5
510 _a
_a
_x
520 _b
_b
_c
_a
_u
521 _a
_a
_b
533 _e
_e
_a
_d
_b
_n
_c
540 _c
_c
_a5
542 _g
_g
_f
546 _a
_a
_b
583 _5
_5
_k
_c
_a
_b
590 _a
_a
_b
600 _b
_b
_v
_t
_c2
_q
_a
_x0
_z
_d
_y
610 _b
_b
_v
_t2
_x
_a
_k0
_p
_z
_d6
_y
611 _a
_a
_d
_n2
_c0
_v
630 _x
_x
_a
_d
_p20
_v
648 _2
_2
_a
650 _x
_x
_a
_d
_b
_z
_y20
_v
651 _x
_x
_a
_y20
_v
_z
655 _0
_0
_a
_y2
_z
700 _i
_i
_t
_c
_b
_s1
_q
_f
_k40
_p
_d
_e
_a
_l
_n6
710 _b
_b
_t
_c
_e
_f
_k40
_p
_d5
_l
_n6
_a
711 _a
_a
_d
_b
_n
_t
_c
730 _s
_s
_a
_d
_n
_p
_f
_l
_k
740 _e
_e
_a
_d
_b
_n
_c6
753 _c
_c
_a
767 _t
_t
_w
770 _t
_t
_w
_x
773 _a
_a
_d
_g
_m
_t
_b
_v
_i
_p
775 _t
_t
_w
_x
776 _s
_s
_a
_d
_b
_z
_i
_t
_x
_h
_c
_w
780 _x
_x
_a
_g
_t
_w
785 _t
_t
_w
_a
_x
787 _x
_x
_d
_g
_i
_t
_w
800 _a
_a
_d
_l
_f
_t0
_q
_v
810 _a
_a
_b
_f
_t
_q
_v
830 _x
_x
_a
_p
_n
_l0
_v
942 _a
_alcc
_cBK
999 _c23312
_d23312