| 000 | 04634nam a2201225Ia 4500 | ||
|---|---|---|---|
| 000 | 02462ntm a2200205 i 4500 | ||
| 001 | 90069 | ||
| 003 | 0 | ||
| 005 | 20250920173424.0 | ||
| 008 | 240223n 000 0 eng d | ||
| 010 |
_z _z _o _a _b |
||
| 015 |
_22 _a |
||
| 016 |
_2 _2 _a _z |
||
| 020 |
_e _e _a _b _z _c _q _x |
||
| 022 |
_y _y _l _a2 |
||
| 024 |
_2 _2 _d _c _a _q |
||
| 028 |
_a _a _b |
||
| 029 |
_a _a _b |
||
| 032 |
_a _a _b |
||
| 035 |
_a _a _b _z _c _q |
||
| 037 |
_n _n _c _a _b |
||
| 040 |
_e _erda _a _d _b _c |
||
| 041 |
_e _e _a _b _g _h _r |
||
| 043 |
_a _a _b |
||
| 045 |
_b _b _a |
||
| 050 |
_a _a _d _b2 _c0 |
||
| 051 |
_c _c _a _b |
||
| 055 |
_a _a _b |
||
| 060 |
_a _a _b |
||
| 070 |
_a _a _b |
||
| 072 |
_2 _2 _d _a _x |
||
| 082 |
_a _a _d _b2 _c |
||
| 084 |
_2 _2 _a |
||
| 086 |
_2 _2 _a |
||
| 090 |
_a _a _m _b _q |
||
| 092 |
_f _f _a _b |
||
| 096 |
_a _a _b |
||
| 097 |
_a _a _b |
||
| 100 |
_e _e _aAli Qjiram G. Pirzada, Renz Michael M. Leandicho. _d _b4 _u _c0 _q16 |
||
| 110 |
_e _e _a _d _b _n _c _k |
||
| 111 |
_a _a _d _b _n _c |
||
| 130 |
_s _s _a _p _f _l _k |
||
| 210 |
_a _a _b |
||
| 222 |
_a _a _b |
||
| 240 |
_s _s _a _m _g _n _f _l _o _p _k |
||
| 245 | 0 |
_a _aEnhancement of random forest by utilizing modified whale optimization algorithm / _d _b _n _cAli Qjiram G. Pirzada, Renz Michael M. Leandicho. _h6 _p |
|
| 246 |
_a _a _b _n _i _f6 _p |
||
| 249 |
_i _i _a |
||
| 250 |
_6 _6 _a _b |
||
| 260 |
_e _e _a _b _f _c _g |
||
| 264 |
_3 _3 _a _d _b _cJune 2023.46 |
||
| 300 |
_e _e _c28 cm. _a46 pp. _b |
||
| 310 |
_a _a _b |
||
| 321 |
_a _a _b |
||
| 336 |
_b _atext _2rdacontent |
||
| 337 |
_3 _30 _b _aunmediated _2rdamedia |
||
| 338 |
_3 _30 _b _avolume _2rdacarrier |
||
| 340 |
_2 _20 _g _n |
||
| 344 |
_2 _2 _a0 _b |
||
| 347 |
_2 _2 _a0 |
||
| 362 |
_a _a _b |
||
| 385 |
_m _m _a2 |
||
| 410 |
_t _t _b _a _v |
||
| 440 |
_p _p _a _x _v |
||
| 490 |
_a _a _x _v |
||
| 500 |
_a _aUndergraduate Thesis: (Bachelor of Science in Computer Science) Pamantasan ng Lungsod ng Maynila, 2023. _d _b _c56 |
||
| 504 |
_a _a _x |
||
| 505 |
_a _a _b _t _g _r |
||
| 506 |
_a _a5 |
||
| 510 |
_a _a _x |
||
| 520 |
_b _b _c _aABSTRACT: Machine learning (ML) have various applications, including the ability of software to predict and analyze results more correctly without explicit instructions, identify the best ways to automate tasks, enhance processes, and many other things. The Random Forest (RF) model has been proven to perform well and has applications in many different sectors, but current research suggests that there is still room for improvement. It is the most well-known and often used machine learning technique. There is still room for development with the RF model. In this paper, the researchers provided an optimization algorithm (WOA) to enhance and improve the accuracy of the Random Forest Algorithm on a UNSW-NB15 Intrusion detection dataset. It achieved an accuracy of 97.14% with the hybrid algorithm compared to the traditional algorithm of 94.79%. Furthermore, the recall scores for the proposed algorithm and traditional RF were 95.80% and 92.26% respectively, while the precision for MWOA-RF and traditional RF were equal at 1.000. It indicates that the suggested method performed better at correctly identifying positive cases and had a lower rate of false negatives recognized. Lastly, The F1-Score given by the MWOA-RF is 0.9785 compared to the F1-Score of the traditional RF, which is 0.9597, which signifies that the proposed MWOA-RF performs better for classification and is the better model for the two since its value is closer to 1. The results imply that MWOA-RF is faily more stable and with its properly tuned hyperparameters, is more suitable for carrying out classification tasks with huge datasets. _u |
||
| 521 |
_a _a _b |
||
| 533 |
_e _e _a _d _b _n _c |
||
| 540 |
_c _c _a5 |
||
| 542 |
_g _g _f |
||
| 546 |
_a _a _b |
||
| 583 |
_5 _5 _k _c _a _b |
||
| 590 |
_a _a _b |
||
| 600 |
_b _b _v _t _c2 _q _a _x0 _z _d _y |
||
| 610 |
_b _b _v _t2 _x _a _k0 _p _z _d6 _y |
||
| 611 |
_a _a _d _n2 _c0 _v |
||
| 630 |
_x _x _a _d _p20 _v |
||
| 648 |
_2 _2 _a |
||
| 650 |
_x _x _a _d _b _z _y20 _v |
||
| 651 |
_x _x _a _y20 _v _z |
||
| 655 |
_0 _0 _a _y2 _z |
||
| 700 |
_i _i _t _c _b _s1 _q _f _k40 _p _d _e _a _l _n6 |
||
| 710 |
_b _b _t _c _e _f _k40 _p _d5 _l _n6 _a |
||
| 711 |
_a _a _d _b _n _t _c |
||
| 730 |
_s _s _a _d _n _p _f _l _k |
||
| 740 |
_e _e _a _d _b _n _c6 |
||
| 753 |
_c _c _a |
||
| 767 |
_t _t _w |
||
| 770 |
_t _t _w _x |
||
| 773 |
_a _a _d _g _m _t _b _v _i _p |
||
| 775 |
_t _t _w _x |
||
| 776 |
_s _s _a _d _b _z _i _t _x _h _c _w |
||
| 780 |
_x _x _a _g _t _w |
||
| 785 |
_t _t _w _a _x |
||
| 787 |
_x _x _d _g _i _t _w |
||
| 800 |
_a _a _d _l _f _t0 _q _v |
||
| 810 |
_a _a _b _f _t _q _v |
||
| 830 |
_x _x _a _p _n _l0 _v |
||
| 942 |
_a _alcc _cBK |
||
| 999 |
_c24246 _d24246 |
||