000 05047nam a2201225Ia 4500
000 02876ntm a2200205 i 4500
001 90055
003 0
005 20250920173702.0
008 240222n 000 0 eng d
010 _z
_z
_o
_a
_b
015 _22
_a
016 _2
_2
_a
_z
020 _e
_e
_a
_b
_z
_c
_q
_x
022 _y
_y
_l
_a2
024 _2
_2
_d
_c
_a
_q
028 _a
_a
_b
029 _a
_a
_b
032 _a
_a
_b
035 _a
_a
_b
_z
_c
_q
037 _n
_n
_c
_a
_b
040 _e
_erda
_a
_d
_b
_c
041 _e
_e
_a
_b
_g
_h
_r
043 _a
_a
_b
045 _b
_b
_a
050 _a
_a
_d
_b2
_c0
051 _c
_c
_a
_b
055 _a
_a
_b
060 _a
_a
_b
070 _a
_a
_b
072 _2
_2
_d
_a
_x
082 _a
_a
_d
_b2
_c
084 _2
_2
_a
086 _2
_2
_a
090 _a
_a
_m
_b
_q
092 _f
_f
_a
_b
096 _a
_a
_b
097 _a
_a
_b
100 _e
_e
_aGrace Anne S. Cahulogan, Ederlyn Ann. V. Gordula.
_d
_b4
_u
_c0
_q16
110 _e
_e
_a
_d
_b
_n
_c
_k
111 _a
_a
_d
_b
_n
_c
130 _s
_s
_a
_p
_f
_l
_k
210 _a
_a
_b
222 _a
_a
_b
240 _s
_s
_a
_m
_g
_n
_f
_l
_o
_p
_k
245 0 _a
_aERPCA-GFCM: An enhancement DDOS attack detection model on internet of things /
_d
_b
_n
_cGrace Anne S. Cahulogan, Ederlyn Ann. V. Gordula.
_h6
_p
246 _a
_a
_b
_n
_i
_f6
_p
249 _i
_i
_a
250 _6
_6
_a
_b
260 _e
_e
_a
_b
_f
_c
_g
264 _3
_3
_a
_d
_b
_cJune 2023.46
300 _e
_e
_c28 cm.
_a76 pp.
_b
310 _a
_a
_b
321 _a
_a
_b
336 _b
_atext
_2rdacontent
337 _3
_30
_b
_aunmediated
_2rdamedia
338 _3
_30
_b
_avolume
_2rdacarrier
340 _2
_20
_g
_n
344 _2
_2
_a0
_b
347 _2
_2
_a0
362 _a
_a
_b
385 _m
_m
_a2
410 _t
_t
_b
_a
_v
440 _p
_p
_a
_x
_v
490 _a
_a
_x
_v
500 _a
_aUndergraduate Thesis: (Bachelor of Science in Computer Science) Pamantasan ng Lungsod ng Maynila, 2023.
_d
_b
_c56
504 _a
_a
_x
505 _a
_a
_b
_t
_g
_r
506 _a
_a5
510 _a
_a
_x
520 _b
_b
_c
_aABSTRACT: This research paper introduced an Enhanced Distributed Denial-of-Service (DDoS) Detection model specifically designed for IoT devices. Given the prevalence of DDoS attacks targeting IoT devices, which involve overwhelming a system with malicious traffic to distrupt its normal functioning, the proposed model aimed to enhance the security and resilience of IoT networks. To address this, the proposed model integrated multiple techniques to improve detection and classification accuracy. The first technique, the ER-Relief algorithm, is a feature selection method that addresses the presence of noise and outliers in the dataset by minimizing a loss function based on the empirical of margins. Principal Component Analysis (PCA) was utilized for dimensionality reduction to enhance the model's performance further. PCA transforms the original high dimensional feature space into a lower-dimensional space while preserving the most critical information. The model incorporates the Global Fuzzy C-means algorithm to achieve better clustering results, and this algorithm addressed the issue of sensitivity to initial conditions, which led to suboptimal clustering results. By incorporating fuzzy logic principles, Global Fuzzy C-means assign data points to multiple clusters with varying degrees of membership, providing a more nuanced representation of the underlying data structure. Lastly, the Random Forest algorithm was employed for training and testing the model. The model was then tested on the CICDDoS2019 dataset, which contains three (3) types of DDoS attacks: DNS, UDP, and MSSQL. Based on the evaluation results, the proposed model achieved an impressive accuracy of 97.92%, recall of 97.92%, FI-score of 97.90%, and precision of 97.93%. These metrics highlighted the model's effectiveness, showcasing its ability to accurately detect and recall various DDoS attacks with high precision and recall. This research advances network security by providing a robust and reliable solution for combating DDoS attacks.
_u
521 _a
_a
_b
533 _e
_e
_a
_d
_b
_n
_c
540 _c
_c
_a5
542 _g
_g
_f
546 _a
_a
_b
583 _5
_5
_k
_c
_a
_b
590 _a
_a
_b
600 _b
_b
_v
_t
_c2
_q
_a
_x0
_z
_d
_y
610 _b
_b
_v
_t2
_x
_a
_k0
_p
_z
_d6
_y
611 _a
_a
_d
_n2
_c0
_v
630 _x
_x
_a
_d
_p20
_v
648 _2
_2
_a
650 _x
_x
_a
_d
_b
_z
_y20
_v
651 _x
_x
_a
_y20
_v
_z
655 _0
_0
_a
_y2
_z
700 _i
_i
_t
_c
_b
_s1
_q
_f
_k40
_p
_d
_e
_a
_l
_n6
710 _b
_b
_t
_c
_e
_f
_k40
_p
_d5
_l
_n6
_a
711 _a
_a
_d
_b
_n
_t
_c
730 _s
_s
_a
_d
_n
_p
_f
_l
_k
740 _e
_e
_a
_d
_b
_n
_c6
753 _c
_c
_a
767 _t
_t
_w
770 _t
_t
_w
_x
773 _a
_a
_d
_g
_m
_t
_b
_v
_i
_p
775 _t
_t
_w
_x
776 _s
_s
_a
_d
_b
_z
_i
_t
_x
_h
_c
_w
780 _x
_x
_a
_g
_t
_w
785 _t
_t
_w
_a
_x
787 _x
_x
_d
_g
_i
_t
_w
800 _a
_a
_d
_l
_f
_t0
_q
_v
810 _a
_a
_b
_f
_t
_q
_v
830 _x
_x
_a
_p
_n
_l0
_v
942 _a
_alcc
_cBK
999 _c25274
_d25274