| 000 | 05251nam a2201225Ia 4500 | ||
|---|---|---|---|
| 000 | 03081ntm a2200205 i 4500 | ||
| 001 | 91443 | ||
| 003 | 0 | ||
| 005 | 20250920173820.0 | ||
| 008 | 241125n 000 0 eng d | ||
| 010 |
_z _z _o _a _b |
||
| 015 |
_22 _a |
||
| 016 |
_2 _2 _a _z |
||
| 020 |
_e _e _a _b _z _c _q _x |
||
| 022 |
_y _y _l _a2 |
||
| 024 |
_2 _2 _d _c _a _q |
||
| 028 |
_a _a _b |
||
| 029 |
_a _a _b |
||
| 032 |
_a _a _b |
||
| 035 |
_a _a _b _z _c _q |
||
| 037 |
_n _n _c _a _b |
||
| 040 |
_e _erda _a _d _b _c |
||
| 041 |
_e _e _a _b _g _h _r |
||
| 043 |
_a _a _b |
||
| 045 |
_b _b _a |
||
| 050 |
_a _a _d _b2 _c0 |
||
| 051 |
_c _c _a _b |
||
| 055 |
_a _a _b |
||
| 060 |
_a _a _b |
||
| 070 |
_a _a _b |
||
| 072 |
_2 _2 _d _a _x |
||
| 082 |
_a _a _d _b2 _c |
||
| 084 |
_2 _2 _a |
||
| 086 |
_2 _2 _a |
||
| 090 |
_a _a _m _b _q |
||
| 092 |
_f _f _a _b |
||
| 096 |
_a _a _b |
||
| 097 |
_a _a _b |
||
| 100 |
_e _e _aNathaniel David M. Alcantara, Louis Angelo B. Arenque, Jhonniel Z. Sicat. _d _b4 _u _c0 _q16 |
||
| 110 |
_e _e _a _d _b _n _c _k |
||
| 111 |
_a _a _d _b _n _c |
||
| 130 |
_s _s _a _p _f _l _k |
||
| 210 |
_a _a _b |
||
| 222 |
_a _a _b |
||
| 240 |
_s _s _a _m _g _n _f _l _o _p _k |
||
| 245 | 0 |
_a _aPE-M: prediction of malnutrition of Barangay 35 Tondo Manila City using random forest algorithm / _d _b _n _cNathaniel David M. Alcantara, Louis Angelo B. Arenque, Jhonniel Z. Sicat. _h6 _p |
|
| 246 |
_a _a _b _n _i _f6 _p |
||
| 249 |
_i _i _a |
||
| 250 |
_6 _6 _a _b |
||
| 260 |
_e _e _a _b _f _c _g |
||
| 264 |
_3 _3 _a _d _b _cApril 2023.46 |
||
| 300 |
_e _e _c28 cm. _avii, 104 pp. _b |
||
| 310 |
_a _a _b |
||
| 321 |
_a _a _b |
||
| 336 |
_b _atext _2rdacontent |
||
| 337 |
_3 _30 _b _aunmediated _2rdamedia |
||
| 338 |
_3 _30 _b _avolume _2rdacarrier |
||
| 340 |
_2 _20 _g _n |
||
| 344 |
_2 _2 _a0 _b |
||
| 347 |
_2 _2 _a0 |
||
| 362 |
_a _a _b |
||
| 385 |
_m _m _a2 |
||
| 410 |
_t _t _b _a _v |
||
| 440 |
_p _p _a _x _v |
||
| 490 |
_a _a _x _v |
||
| 500 |
_a _aUndergraduate Thesis: (Bachelor of Science of Information Technology) - Pamantasan ng Lungsod ng Maynila, 2023. _d _b _c56 |
||
| 504 |
_a _a _x |
||
| 505 |
_a _a _b _t _g _r |
||
| 506 |
_a _a5 |
||
| 510 |
_a _a _x |
||
| 520 |
_b _b _c _aABSTRACT: Malnutrition is still an ongoing problem in the Philippines as it poses a threat especially to children. There are multiple consideration for malnutrition in order to to help find the root cause of malnutrition for each child, it is quite a tedious task to perform. According to the classification of undernutrition rates, the prevalence in the Philippines is of extremely high public health relevance. It was stated that in 2019, the prevalence of underweight and wasting was 19% and 6%, respectively. Poverty amplifies the risk of, and risks from, malnutrition. People who are poor more likely to be affected by different forms of malnutrition. Also, malnutrition increases health care costs, reduces productivity, and shows economic growth, which can perpetuate a cycle of poverty and ill-health. The application Pe-M, is a web application which is aimed to predict the malnutrition rate within Barangay 35 in Tondo Manila City and also give food recommendations based on the classification the children are categorized. The application uses Random Forest Algorithm in calculating the prediction from the data provided in order to calculate the percentage of malnutrition present in Barangay 35 Tondo Manila City. To ensure that the web application performs as per its specified requirements, comprehensive specification and evaluation of software product quality was conducted using the ISO 25010 software quality model. This study specifically seeks to evaluate the web application in terms of performance efficiency and usability. The following results show that there are kids that fall in the classification of malnutrition showing that there is malnutrition in the barangay. The confusion matrix shows that RFA gives 87.80% accuracy based on the risk factors given and the trained data in the system. The RFA predicted that 21.95% of the data is said to be the malnutrition rate in the barangay based on the given data and the highest risk factor in the data with 3.6% is mineral water consumption of the citizens. The model identified the risk factors which helped predict malnutrion rate making the model more reliable and transparent. _u |
||
| 521 |
_a _a _b |
||
| 533 |
_e _e _a _d _b _n _c |
||
| 540 |
_c _c _a5 |
||
| 542 |
_g _g _f |
||
| 546 |
_a _a _b |
||
| 583 |
_5 _5 _k _c _a _b |
||
| 590 |
_a _a _b |
||
| 600 |
_b _b _v _t _c2 _q _a _x0 _z _d _y |
||
| 610 |
_b _b _v _t2 _x _a _k0 _p _z _d6 _y |
||
| 611 |
_a _a _d _n2 _c0 _v |
||
| 630 |
_x _x _a _d _p20 _v |
||
| 648 |
_2 _2 _a |
||
| 650 |
_x _x _a _d _b _z _y20 _v |
||
| 651 |
_x _x _a _y20 _v _z |
||
| 655 |
_0 _0 _a _y2 _z |
||
| 700 |
_i _i _t _c _b _s1 _q _f _k40 _p _d _e _a _l _n6 |
||
| 710 |
_b _b _t _c _e _f _k40 _p _d5 _l _n6 _a |
||
| 711 |
_a _a _d _b _n _t _c |
||
| 730 |
_s _s _a _d _n _p _f _l _k |
||
| 740 |
_e _e _a _d _b _n _c6 |
||
| 753 |
_c _c _a |
||
| 767 |
_t _t _w |
||
| 770 |
_t _t _w _x |
||
| 773 |
_a _a _d _g _m _t _b _v _i _p |
||
| 775 |
_t _t _w _x |
||
| 776 |
_s _s _a _d _b _z _i _t _x _h _c _w |
||
| 780 |
_x _x _a _g _t _w |
||
| 785 |
_t _t _w _a _x |
||
| 787 |
_x _x _d _g _i _t _w |
||
| 800 |
_a _a _d _l _f _t0 _q _v |
||
| 810 |
_a _a _b _f _t _q _v |
||
| 830 |
_x _x _a _p _n _l0 _v |
||
| 942 |
_a _alcc _cBK |
||
| 999 |
_c25789 _d25789 |
||