| 000 | 05377nam a2201225Ia 4500 | ||
|---|---|---|---|
| 000 | 03213ntm a2200205 i 4500 | ||
| 001 | 69446 | ||
| 003 | 0 | ||
| 005 | 20250920174331.0 | ||
| 008 | 171122n 000 0 eng d | ||
| 010 |
_z _z _o _a _b |
||
| 015 |
_22 _a |
||
| 016 |
_2 _2 _a _z |
||
| 020 |
_e _e _a _b _z _c _q _x |
||
| 022 |
_y _y _l _a2 |
||
| 024 |
_2 _2 _d _c _a _q |
||
| 028 |
_a _a _b |
||
| 029 |
_a _a _b |
||
| 032 |
_a _a _b |
||
| 035 |
_a _a _b _z _c _q |
||
| 037 |
_n _n _c _a _b |
||
| 040 |
_e _erda _a _d _b _c |
||
| 041 |
_e _e _a _b _g _h _r |
||
| 043 |
_a _a _b |
||
| 045 |
_b _b _a |
||
| 050 |
_a _a _d _b2 _c0 |
||
| 051 |
_c _c _a _b |
||
| 055 |
_a _a _b |
||
| 060 |
_a _a _b |
||
| 070 |
_a _a _b |
||
| 072 |
_2 _2 _d _a _x |
||
| 082 |
_a _a _d _b2 _c |
||
| 084 |
_2 _2 _a |
||
| 086 |
_2 _2 _a |
||
| 090 |
_a _a _m _b _q |
||
| 092 |
_f _f _a _b |
||
| 096 |
_a _a _b |
||
| 097 |
_a _a _b |
||
| 100 |
_e _e _aMiranda, Armando L. _d _b4 _u _c0 _q16 |
||
| 110 |
_e _e _a _d _b _n _c _k |
||
| 111 |
_a _a _d _b _n _c |
||
| 130 |
_s _s _a _p _f _l _k |
||
| 210 |
_a _a _b |
||
| 222 |
_a _a _b |
||
| 240 |
_s _s _a _m _g _n _f _l _o _p _k |
||
| 245 | 0 |
_a _aDesign of single storey structure using light gage steel / _d _b _n _cArmando L. Miranda. _h6 _p |
|
| 246 |
_a _a _b _n _i _f6 _p |
||
| 249 |
_i _i _a |
||
| 250 |
_6 _6 _a _b |
||
| 260 |
_e _e _a _b _f _c _g |
||
| 264 |
_3 _3 _a _d _b _c46 |
||
| 300 |
_e _e _c28 cm. _axvi, 224 pages _b |
||
| 310 |
_a _a _b |
||
| 321 |
_a _a _b |
||
| 336 |
_b _atext _2rdacontent |
||
| 337 |
_3 _30 _b _aunmediated _2rdamedia |
||
| 338 |
_3 _30 _b _avolume _2rdacarrier |
||
| 340 |
_2 _20 _g _n |
||
| 344 |
_2 _2 _a0 _b |
||
| 347 |
_2 _2 _a0 |
||
| 362 |
_a _a _b |
||
| 385 |
_m _m _a2 |
||
| 410 |
_t _t _b _a _v |
||
| 440 |
_p _p _a _x _v |
||
| 490 |
_a _a _x _v |
||
| 500 |
_a _aThesis (M.A.) -- Pamantasan ng Lungsod ng Maynila, 1999.;A directed study presented to the faculty of Graduate School of Engineering in partial fulfillment of the requirements for the degree Master of Engineering (MEng) with specialization in Structural Engineering. _d _b _c56 |
||
| 504 |
_a _a _x |
||
| 505 |
_a _a _b _t _g _r |
||
| 506 |
_a _a5 |
||
| 510 |
_a _a _x |
||
| 520 |
_b _b _c _aABSTRACT: Cold-formed steel, originally used in car bodies, railway coaches, and window frames is now becoming popular as one of the structural members in low-rise structures, especially in low cost housing projects. These structural members are shapes commonly manufactured from steel plate, and sheet, or strip. Because of the thinness of the material, a variety of shapes can be produced, but due to stability and buckling problem, its design methodology requires intensive study to evaluate the structural property of the material and determine its strength limitations. The main objective of the study was to establish design guidelines and standards by reviewing the history of the materials; determine the appropriate design criteria, formulas and specifications from the American Iron and Steel Institute, and apply the same to a single-storey model house, structural members such as purlins, truss, beams, columns and connections and evaluate design result. STAAD software was used in the structural analysis and hot rolled steel design, while design computations for cold-formed section will be the lightest and stable shapes that will equal or surpass the required stress. Cost and weight comparison was an additional topic only to determine the relative economics in using steel and timber. Results of the study showed that the design criteria, formulas and specifications taken from the 1996 AISI design manual with the corresponding design flow chart was established as the guide for the design of a single-storey structure. Evaluation of design results also provided standard sections in the shapes of channel, Zee, and tubular. For commercial availability and economy, thickness was limited to a minimum of 0.45mm (gauge 26) and a minimum of 3.42mm (gauge 10) for economy. A weight ratio of less than 50% between cold-formed and hot-rolled sections was the most economical. The standard depth of lips and sections was provided in the design aids table. This study will serve as a guide to structural engineers, steel manufacturers, housing developers, research students, and the academe who have interest in cold-formed design. For simple, fast, and accurate design process, design aids such as tables, graphs, and computer worksheet were provided in the appendix. _u |
||
| 521 |
_a _a _b |
||
| 533 |
_e _e _a _d _b _n _c |
||
| 540 |
_c _c _a5 |
||
| 542 |
_g _g _f |
||
| 546 |
_a _a _b |
||
| 583 |
_5 _5 _k _c _a _b |
||
| 590 |
_a _a _b |
||
| 600 |
_b _b _v _t _c2 _q _a _x0 _z _d _y |
||
| 610 |
_b _b _v _t2 _x _a _k0 _p _z _d6 _y |
||
| 611 |
_a _a _d _n2 _c0 _v |
||
| 630 |
_x _x _a _d _p20 _v |
||
| 648 |
_2 _2 _a |
||
| 650 |
_x _x _a _d _b _z _y20 _v |
||
| 651 |
_x _x _a _y20 _v _z |
||
| 655 |
_0 _0 _a _y2 _z |
||
| 700 |
_i _i _t _c _b _s1 _q _f _k40 _p _d _e _a _l _n6 |
||
| 710 |
_b _b _t _c _e _f _k40 _p _d5 _l _n6 _a |
||
| 711 |
_a _a _d _b _n _t _c |
||
| 730 |
_s _s _a _d _n _p _f _l _k |
||
| 740 |
_e _e _a _d _b _n _c6 |
||
| 753 |
_c _c _a |
||
| 767 |
_t _t _w |
||
| 770 |
_t _t _w _x |
||
| 773 |
_a _a _d _g _m _t _b _v _i _p |
||
| 775 |
_t _t _w _x |
||
| 776 |
_s _s _a _d _b _z _i _t _x _h _c _w |
||
| 780 |
_x _x _a _g _t _w |
||
| 785 |
_t _t _w _a _x |
||
| 787 |
_x _x _d _g _i _t _w |
||
| 800 |
_a _a _d _l _f _t0 _q _v |
||
| 810 |
_a _a _b _f _t _q _v |
||
| 830 |
_x _x _a _p _n _l0 _v |
||
| 942 |
_a _alcc _cBK |
||
| 999 |
_c27799 _d27799 |
||